Ejemplo 25.1 Medida de la variación de presión

Estimar cómo varía la presión total durante la descomposición en fase gas $2N_2O_5$ (g) \rightarrow $4NO_2$ (g) + O_2 (g).

Método La presión total es proporcional al número de moléculas en fase gas (a temperatura y volumen constante y suponiendo comportamiento ideal). Por tanto, dado que cada mol de N_2O_5 genera $\frac{5}{2}$ moles de gas, es de esperar que la presión se incremente en $\frac{5}{2}$ veces su valor inicial. Para confirmar esta conclusión, expresar el avance de la reacción en función de la fracción de moléculas de N_2O_5 que han reaccionado, α .

Respuesta Sea p_0 la presión inicial y n la cantidad inicial de moléculas de N_2O_5 . Cuando se ha descompuesto una fracción α de N_2O_5 , las cantidades de los diversos componentes de la mezcla de reacción son:

 N_2O_5 NO_2 O_2 Total Cantidad: $n(1-\alpha)$ $2\alpha n$ $\frac{1}{2}\alpha n$ $n(1+\frac{3}{2}\alpha)$

Cuando $\alpha = 0$, la presión es p_0 , mientras que en cualquier instante la presión total es

$$p = (1 + \frac{3}{2}\alpha)p_0$$

Cuando ha terminado la reacción, la presión se ha incrementado en $\frac{5}{2}$ veces su valor inicial.

Autoevaluación 25.1 Repetir los cálculos para 2NOBr (g) \rightarrow 2 NO (g) + Br₂ (g).

 $[p = (1 + \frac{1}{2}\alpha)p_0]$

Ilustración

Si la velocidad de formación de NO a partir de la reacción 2NOBr (g) \rightarrow 2NO (g) + Br₂ (g) es de 1.6 \times 10⁻⁴ mol L⁻¹ s⁻¹, sabiendo que v_{NO} = +2 se obtiene que v = 8.0 \times 10⁻⁵ mol L⁻¹ s⁻¹. Dado que v_{NOBr} = -2, se obtiene que d[NOBr]/dt = -1.6 \times 10⁻⁴ mol L⁻¹ s⁻¹. Por tanto, la velocidad de consumo del NOBr es 1.6 \times 10⁻⁴ mol L⁻¹ s⁻¹.

Autoevaluación 25.2 La velocidad de variación de la concentración molar de los radicales CH_3 en la reacción $2CH_3$ (g) $\rightarrow CH_3CH_3$ (g) viene dada por $d[CH_3]/dt = -1.2$ mol L^{-1} s⁻¹ bajo determinadas condiciones. ¿Cuáles son (a) la velocidad de la reacción y (b) la velocidad de formación del CH_3CH_3 ?

[(a) 0.60 mol L^{-1} s⁻¹, (b) 0.60 mol L^{-1} s⁻¹]

Ejemplo 25.2 Aplicación del método de las velocidades iniciales

Se estudió la reacción de recombinación de átomos de yodo en fase gas en presencia de argón y se determinó el orden de la reacción mediante el método de las velocidades iniciales. Las velocidades iniciales de la reacción 2I (g) + Ar (g) \rightarrow I₂ (g) + Ar (g) son:

$[1]_0/(10^{-5} \text{ mol L}^{-1})$	1.0	2.0	4.0	6.0
$v_0/(\text{mol L}^{-1} \text{ s}^{-1})$	(a) 8.70×10^{-4}	3.48×10^{-3}	1.39×10^{-2}	3.13×10^{-2}
	(b) 4.35×10^{-3}	1.74×10^{-2}	6.96×10^{-2}	1.57×10^{-1}
	(c) 8.69×10^{-3}	3.47×10^{-2}	1.38×10^{-1}	3.13×10^{-1}

Las concentraciones de argón son (a) 1.0×10^{-3} mol L⁻¹, (b) 5.0×10^{-3} mol L⁻¹ y (c) 1.0×10^{-2} mol L⁻¹. Determinar el orden respecto a los átomos de I y de Ar y la constante de velocidad.

Método Representar el logaritmo de la velocidad inicial, log v_{or} frente a log $[l]_{o}$ para una concentración de Ar determinada y, separadamente, frente a log $[Ar]_{o}$ para una concentración determinada de l. Las pendientes de cada representación son los órdenes parciales respecto a l y Ar, respectivamente. La ordenada en el origen proporciona log k.

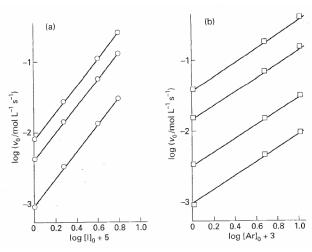
Respuesta La Figura 25.4 muestra las representaciones, con pendientes 2 y 1, respectivamente. Así, la ecuación de velocidad inicial será

$$V_0 = k[I]_0^2 [Ar]_0$$

Esta ecuación de velocidad implica que la reacción es de segundo orden en [l], de primer orden en [Ar] y de tercer orden global. La ordenada en el origen conduce a $k = 9 \times 10^9$ mol⁻² L² s⁻¹.

Comentario Las unidades de k se deducen automáticamente del cálculo y son siempre de tal manera que convierten el producto de concentraciones en concentración por unidad de tiempo (por ejemplo, mol L^{-1} s⁻¹).

25.4 Representación de log v_0 frente a (a) log $[I]_0$ para un determinado valor de $[A]_0$ y (b) log $[A]_0$ para un determinado valor de $[I]_0$.



Autoevaluación 25.3 La velocidad inicial de una reacción depende de la concentración de una especie J de la siguiente manera

$[J]_0/(10^{-3} \text{ mol L}^{-1})$	5.0	8.2	17	30
$v_0/(10^{-7} \text{ mol L}^{-1} \text{ s}^{-1})$	3.6	9.6	41	130

Determinar el orden respecto a J y la constante de velocidad de la reacción.

$$[2, 1.4 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1}]$$

Ejemplo 25.3 Análisis de una reacción de primer orden

Se estudió la variación de la presión parcial del azometano con el tiempo a 600 K, obteniéndose los siguientes resultados. Comprobar que la descomposición

$$CH_3N_2CH_3(g) \longrightarrow CH_3CH_3(g) + N_2(g)$$

es de primer orden respecto al azometano y determinar la constante de velocidad.

t/s	0	1000	2000	3000	4000
ρ/(10 ⁻² Torr)	8.20	5.72	3.99	2.78	1.94

Método Tal como se indica en el texto, para confirmar que la reacción es de primer orden, la representación de ln ([A]/[A]₀) frente al tiempo debe ser una línea recta. Dado que la presión parcial de un gas es proporcional a su concentración, es equivalente representar ln (p/p_0) frente a t. Si se obtiene una línea recta, la pendiente se puede identificar con -k.

Respuesta Se construye la siguiente tabla:

t/s	0	1000	2000	3000	4000
$\ln (p/p_0)$	1	-0.360	-0.720	-1.082	-1.441

línea recta, confirmando que la reacción es de primer orden, de pendiente -3.6×10^{-4} . Por tanto, $k = 3.6 \times 10^{-4}$ s⁻¹.

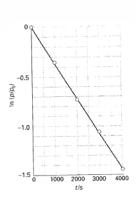
Autoevaluación 25.4 En un experimento concreto, se determinó que la concentración de N_2O_5 en bromo líquido variaba con el tiempo según:

tls	0	200	400	600	1000
[N _a O _a]/mol L ⁻¹	0.110	0.073	0.048	0.032	0.014

Confirmar que la reacción es de primer orden en N2O5 y calcular la constante de velocidad.

 $[k = 2.1 \times 10^{-3} \, \text{s}^{-1}]$

25.6 Determinación de la constante de velocidad para una reacción de primer orden: al representar In [A] (o, como aquí, In p) frente a t, se obtiene una línea recta cuya pendiente permite obtener k.



Ejemplo 25.5 Determinación de los parámetros de Arrhenius

Se mide la velocidad de descomposición del acetaldehido (etanal, CH_3CHO) en el intervalo de temperaturas entre 700 y 1000 K, obteniéndose las siguientes constantes de velocidad. Determinar E_a y A.

Método De acuerdo con la Ecuación 24, se pueden analizar los datos representando In $(k/L \text{ mol}^{-1} \text{ s}^{-1})$ frente a 1/(T/K); la pendiente de la línea recta es $(-E_a/R)/K$ y la ordenada en el origen es In A.

Respuesta Se construye la siguiente tabla

$$10^{3} \text{ K/T}$$
 1.43 1.37 1.32 1.27 1.23 1.19 1.10 1.00 $\ln \left(\frac{k}{\text{L mol}^{-1} \text{ s}^{-1}} \right)$ -4.51 -3.35 -2.25 -1.07 -0.24 0.77 3.00 4.98

y se representa In k frente a 1/T (Fig. 25.11). El ajuste por mínimos cuadrados proporciona una pendiente de -2.27×10^4 y una ordenada de 27.7. Por tanto,

$$E_{\rm a} = (2.21 \times 10^4 \text{ K}) \times (8.3145 \text{ JK}^{-1} \text{ mol}^{-1}) = 188 \text{ kJ mol}^{-1}$$

 $A = e^{27.0} \text{ L mol}^{-1} \text{ s}^{-1} = 1.1 \times 10^{12} \text{ L mol}^{-1} \text{ s}^{-1}$

Comentario Obsérvese que A tiene las mismas unidades que k. Las pendientes y ordenadas en el origen de las representaciones son adimensionales y hay que tener cuidado al relacionar los valores numéricos con alguna cantidad física, sabiendo cómo deben representarse los datos. En la práctica, A se debe obtener a partir de datos que no impliquen una extrapolación de valores muy alejados.

Autoevaluación 25.6 Determinar E_a y A a partir de los siguientes datos:

T/K 300 350 400 450 500
$$k/(\text{L mol}^{-1} \text{ s}^{-1})$$
 7.9×10^6 3.0×10^7 7.9×10^7 1.7×10^8 3.2×10^8

 $[8 \times 10^{10} \, L \, mol^{-1} \, s^{-1}, \, 23 \, kJ \, mol^{-1}]$

Ejemplo 25.6 Estudio de reacciones consecutivas

En un proceso industrial discontinuo la sustancia A se transforma en el producto deseado I que a su vez se descompone en el producto carente de valor C, siendo cada etapa de primer orden. ¿Cuánto tardará el producto I en alcanzar su concentración máxima?

Método La dependencia temporal de la concentración de I viene dada por la Ec. 34. Se puede calcular el tiempo en el que [I] pasa por el máximo, $t_{\rm max}$ calculando d[I]/dt e igualando a cero.

Respuesta A partir de la Ec. 34 se obtiene

$$\frac{d[I]}{dt} = -\frac{k_a[A]_0(k_a e^{-k_a t} - k_b e^{-k_b t})}{k_b - k_a}$$

Esta velocidad es igual a cero cuando

$$k_a e^{-k_a t} = k_b e^{-k_b t}$$

De manera que,

$$t_{\text{max}} = \frac{1}{k_{\text{a}} - k_{\text{b}}} \ln \frac{k_{\text{a}}}{k_{\text{b}}}$$

Comentario Para un valor dado de k_a , a medida que aumenta k_b aumentan tanto el tiempo necesario para alcanzar el máximo de [I] como el rendimiento de la reacción.

Autoevaluación 25.7 Calcular la concentración máxima de I y justificar la última afirmación.

$$[[I]_{\text{max}}/[A]_0 = (k_a/k_b)^c, c = k_b/(k_b-k_a)]$$

Ejemplo 25.7 Utilización de la aproximación del estado estacionario

Deducir la ecuación de velocidad para la descomposición del N₂O₅,

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

a partir del siguiente mecanismo:

Método En primer lugar hay que identificar los intermedios (especies que aparecen en alguna etapa pero no en la reacción global) y obtener una expresión para sus velocidades netas de formación. Todas estas velocidades se igualan a cero y se resuelve el sistema de ecuaciones algebraicamente.

Respuesta Los intermedios son el NO y el NO₃; las velocidades netas de cambio de sus concentraciones son:

$$\frac{d[NO]}{dt} = k_b[NO_2][NO_3] - k_c[NO][N_2O_5] \approx 0$$

$$\frac{d[NO_3]}{dt} = k_a[N_2O_5] - k_a'[NO_2][NO_3] - k_b[NO_2][NO_3] \approx 0$$

La velocidad de cambio neto del N_2O_5 es

$$\frac{d[N_2O_5]}{dt} = -k_a[N_2O_5] + k_a'[NO_2][NO_3] - k_c[NO][N_2O_5]$$

y reemplazando las concentraciones de los intermedios a partir de las ecuaciones anteriores se obtiene:

$$\frac{d[N_2O_5]}{dt} = -\frac{2k_ak_b[N_2O_5]}{k_a' + k_b}$$

Comentario La descomposición del N_2O_5 es problemática porque a bajas concentraciones su velocidad disminuye más de lo esperado. Se cree que esta disminución es debida al cambio de las constantes de velocidad (particularmente k_a).

Autoevaluación 25.8 Deducir la ecuación de velocidad para la descomposición del ozono a partir de la reacción 20_3 (g) $\rightarrow 30_2$ (g), basándose en el mecanismo (incompleto):

$$\begin{array}{l} O_3 \longrightarrow O_2 + O \qquad k_a \\ O_2 + O \longrightarrow O_3 \qquad k'_a \\ O + O_3 \longrightarrow 2O_2 \qquad k_b \end{array}$$

$$[d[O_3]/dt = -k_a k_b [O_3]^2 / \left(k'_a [O_2] + k_b [O_3]\right)]$$

Ejemplo 25.8 Análisis de un preequilibrio

Repetir los cálculos del preequilibrio pero sin ignorar el hecho de que I desaparece lentamente para formar P.

Método Empezar obteniendo los cambios de concentración de todas las especies y aplicando la aproximación del estado estacionario a I. Utilizar la expresión resultante para obtener la velocidad de cambio de la concentración de P.

Respuesta Las velocidades netas de cambio de P e I son:

$$\frac{\mathsf{d}[\mathsf{P}]}{\mathsf{d}\,t} = k_{\mathsf{b}}[\mathsf{I}]$$

$$\frac{d[I]}{dt} = k_a[A][B] - k'_a[I] - k_b[I] \approx 0$$

Resolviendo la segunda ecuación se obtiene

$$[I] \approx \frac{k_a[A][B]}{k_a' + k_b}$$

Sustituyendo en la velocidad de formación de P:

$$\frac{d[P]}{dt} \approx k[A][B] \qquad k = \frac{k_a k_b}{k'_a + k_b}$$

Comentario Esta expresión se reduce a la de la Ec. 44 cuando la constante de velocidad para la desaparición de I hacia productos es mucho menor que la de su reconversión a reactivos, $k_b \ll k'_a$.

Autoevaluación 25.9 Mostrar que un mecanismo de preequilibrio en el que $2A \Rightarrow I(K)$ seguido por $I + B \rightarrow P(k)$ conduce a una ecuación de velocidad de tercer orden.

 $[d[P]/dt = k_b K[A]^2[B]]$